

Exercise Set #10

“Discrete Mathematics” (2025)

Exercise 7 is to be submitted on Moodle before 23:59 on May 5th, 2025

Note: Spanning trees exist only for connected graphs. All graphs in this exercise set are to be assumed as connected.

E1. Let G be a graph and $L(G)$ be the Laplace matrix. If $L_0(G)$ is the matrix obtained by removing the last row and column of $L(G)$, show that

$$\det L_0(G) = \frac{1}{n} \lambda_1 \lambda_2 \dots \lambda_{n-1}$$

where $\lambda_1, \lambda_2, \dots, \lambda_{n-1}$ are the eigenvalues of $L(G)$ with multiplicities (could be possibly zero).

Hint: $\det(L(G) - xI_n) = -x(\lambda_1 - x)(\lambda_2 - x) \dots (\lambda_{n-1} - x)$.

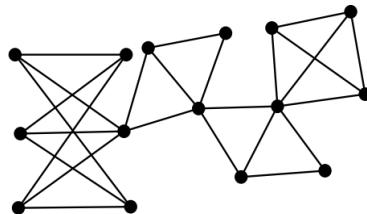
E2. Find the number of spanning trees of the following graphs.

- (1) The complete graph $K_n = \binom{[n]}{2}$. That is to say that K_n is a graph with n vertices such that there is an edge between any two vertices.
- (2) The complete bipartite graph $K_{n,m} = ([n] \sqcup [m], [n] \times [m])$. That is, the vertices are into two groups of size n and m and there is an edge between each vertex of one group to another.
- (3) A path graph $P_n = ([n], E)$ where $E = \{\{i, i+1\}\}_{i=1}^{n-1}$.
- (4) A circular graph $C_n = P_n + \{1, n\}$.

E3. Suppose G_1 and G_2 are graphs with exactly 1 vertex in common. That is $V(G_1) \cap V(G_2) = \{v\}$ for some v . If $T(G)$ denotes the number of spanning trees of a graph G , then show that

$$T(G_1 \cup G_2) = T(G_1) T(G_2)$$

Here $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. Now find $T(G)$ where G is the following graph



E4. Prove the following lemma: Suppose $S \subseteq [m]$. Then,

- (1) For $\sigma \in \text{Perm}([m])$ such that $[m] \setminus S \subseteq [m]^\sigma$, we have that $\sigma|_S \in \text{Perm}(S)$. Here $\sigma|_S : S \rightarrow [m]$ is the restriction of σ to S and $[m]^\sigma$ denotes the set of fixed points under the permutation σ .
- (2) For σ as above, we get $\text{sgn}(\sigma|_S) = \text{sgn}(\sigma)$.

(3) The mapping $\sigma \mapsto \sigma|_S$ is a bijection between

$$\{\sigma \in \text{Perm}([m]) \mid [m] \setminus S \subseteq [m]^\sigma\} \leftrightarrow \text{Perm}(S).$$

E5. Recall from linear algebra the notion of the adjoint matrix. For a matrix A , we define matrix $\text{adj}(A)$ as

$$\text{adj}(A)_{ji} = (-1)^{i+j} \det A^{(i,j)}$$

where $A^{(i,j)}$ is the matrix obtained by A after deletion of i th row and j th column. Now let G be a graph and $L(G)$ be the Laplace matrix of G

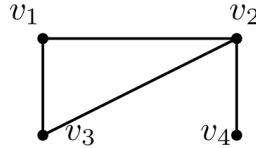
- (1) Let $v \in \mathbb{C}^n$ be the column vector with all 1 s . Verify that $L(G)v = 0$.
- (2) What is $\text{rank}(L(G))$? What is then the null space of $L(G)$?
- (3) What is $\det(L(G))$? What is the product $L(G) \times \text{adj}(L(G))$?
- (4) Conclude that $|\det L(G)^{(i,j)}|$ is the independent of i, j . Use this to further conclude that the proof of Kirchhoff's theorem given in the class did not depend on which row was removed from the incidence matrix.

E6. Let $T(K_n)$ be the number of spanning trees of the complete graph K_n , as defined above. Show that

$$(n-1)T(K_n) = \sum_{k=1}^{n-1} k(n-k) \binom{n-1}{k-1} T(K_k) T(K_{n-k}).$$

E7. (Exercise to submit)

Consider the following graph $G = (V, E)$:



- (a) Determine all spanning trees of G .
- (b) Compute the Laplacian matrix of G .
- (c) Use Kirchhoff's theorem to determine the number of spanning trees of G .